New Approach to Casting Defects Classification and Analysis Supported by Simulation
نویسندگان
چکیده
Foundry industry suffers from poor quality and productivity due to the large number of process parameters, combined with lower penetration of manufacturing automation and shortage of skilled workers compared to other industries. Global buyers demand defect-free castings and strict delivery schedule, which foundries are finding it very difficult to meet. Casting defects result in increased unit cost and lower morale of shop floor personnel. The defects need to be diagnosed correctly for appropriate remedial measures, otherwise new defects may be introduced. Unfortunately, this is not an easy task, since casting process involves complex interactions among various parameters and operations related to metal composition, methods design, molding, melting, pouring, shake-out, fettling and machining. For example, if shrinkage porosity is identified as gas porosity, and the pouring temperature is lowered to reduce the same, it may lead to another defect, namely cold shut. So far, casting defect analysis has been carried out using techniques like causeeffect diagrams, design of experiments, if-then rules (expert systems), and artificial neural networks. Most of the previous work is focused on finding process-related causes for individual defects, and optimizing the parameter values to reduce the defects. This is not sufficient for completely eliminating the defects, since parameters related to part, tooling and methods design also affect casting quality, and these are not considered in conventional defect analysis approaches. In this work, we present a 3-step approach to casting defect identification, analysis and rectification. The defects are classified in terms of their appearance, size, location, consistency, discovery stage and inspection method. This helps in correct identification of the defects. For defect analysis, the possible causes are grouped into design, material and process parameters. The effect of suspected cause parameters on casting quality is ascertained through simulation. Based on the results and their interpretation, the optimal values of the parameters are determined to eliminate the defects. The proposed approach overcomes the difficulty of controlling process parameters in foundries with manual processes and unskilled labor, by making the design more robust (less sensitive) with respect to process parameters. This will especially help SME foundries to significantly improve their quality levels.
منابع مشابه
Numerical Investigation on the Effect of Mold Design on Shrinkage of Sand Casted Multistage BB3-6×6 Pump Casing (RESEARCH NOTE)
Design and manufacturing technology of high pressure multistage pumps which are commonly utilized in oil and gas industries, used to be imported from foreign companies. Due to international sanctions against I. R. Iran, it started to be designed and launched domestically. Nowadays all production lines including design, manufacturing and testing of these pumps have been performed by Iranian expe...
متن کاملThermal Simulation of Solidification Process in Continuous Casting
In this study, a mathematical model is introduced to simulate the coupled heat transfer equation and Stefan condition occurring in moving boundary problems such as the solidification process in the continuous casting machines. In the continuous casting process, there exists a two-phase Stefan problem with moving boundary. The control-volume finite difference approach together with the boundary ...
متن کاملNumerical Optimization of Grey C.I. Casting using Simulation
Foundries represent an important sector of the manufacturing industry and these foundry industries in developing countries suffer from poor quality and productivity due to number of process parameters involved in the casting process. Even in a completely controlled process, defects in casting are observed and hence casting process is also known as process of uncertainty which challenges explana...
متن کاملThree-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell
In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters, complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...
متن کاملUsing Finite Point Method for the Numerical Simulation of Heat Transfer Coupled with Microsegregation during Continuous Casting
In the present work, a meshless method called Finite Point Method (FPM) is developed to simulate the solidification process of a continuously cast steel bloom in both primary and secondary cooling regions. The method is based on the use of a weighted least-square interpolation procedure. A transverse slice of the bloom moving at casting speed is considered as the computational domain and two di...
متن کامل